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increase and, as a result, the position hit onto the set b = 0 (& = 0). 
The author has not succeeded in resolving the question of the existence of controls of 

the first player increasing the lesser maximum. Therefore, the theorem contains reserva- 
tions. The difficulty described is sufficiently typical. Its existence and ways for over- 
coming it were noted in [2-J. 
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We examine the optimal control problem for a system in which the process termination 
time is not fixed. The system of equations of motion contains a small parameter 
and is reduced to the form of systems with rotating phase. We assume that the 
frequency depends upon “slow time”, while the control occurs in the small terms, 
so that the system is weakly controllable, Using the averaging method we con- 
struct a solution of the optimal control problem and we assume that the time in- 
terval over which the process evolves is a quantity of the order of 1 I 8, where a 
is the small parameter. This assumption proves to be a natural one if the termi- 
nal manifold depends only on the slow variables. Thus, we investigate the cases, 
of interest in practice, of controlled systems with small but protracted controls. 
We solve certain concrete problems with the use of the canonic averaging me- 
thod developed. 

1, Strtrmeat of the ptobl8m. Let the system’s motion be described by the 
equations 

11’ = v (z) + eF (z, a, 9, u, 4, 9 PO) = 90 
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Here a is the n-dimensional vector of “slow” variables, belonging to some bounded do- 
main of definition and smoothness of the functions t and F; T = E (t - to) -i- 'to 

is slow time ; 9 is a scalar “fast” variable (the phase) varying on an unbounded interval; 

E is a small parameter, c E [O, a,,]; t,, rs, a,-, and $,,are initial data, t is time, 
t E [to, tJ, tl - 1 / E. The m-dimensional control vector u (t) is assumed to be- 

long to the class of piecewise-continuous functions such that the solution of system(l.l) 
exists and is unique on the interval being considered. The functions f, Y and F are 

assumed sufficiently smooth in the slow variables; moreover, y (7) > v. > 0. The 
functions f and E are assumed periodic with period 231 and piecewise continuous with 

respect to the fast phase 9. The requirement of smoothness with respect to the slow vari- 
ables is dictated by the order of the approximations (in powers of a). By analogy with 

uncontrollable systems [l - 33 Eqs. (1.1) can be called a weakly-controllable system 
with rotating phase. A number of oscillatory systems subject to perturbations and small 
controls reduce to form (1.1). 

We pose the following optimal control problem, Find a piecewise-continuous control 

u (t) such that at some unfixed instant t, the slow phase variables would belong to ma- 
nifold (1.2) and, here, the minimal of functional (1.3) (g is a scalar function) would be 

achieved 
G (z, a, E) It, = 0, G = (Gl,..., G,), i<z<n. (1.2) 

J = g (rr, a (tl), a) ---t min, rl = e (tl - to) + TO (1.3) 
UEU 

The functions G and g are assumed sufficiently smooth. Note that the functional 

J=g,(r,,o(t,),r)+eS’g.(r.a.IV,o,e)dt (1.4) 
to 

is reduced to the form (1.3). In fact, let us introduce an additional slow variable a,+, 
changing in accord with the equation 

%t1 = f%2 (rt a, Ip, u, E), ant1 (43) = 0 

then functional (1.4) takes on a particular form of (1.3) : J = g, (q, a ( tr), I?) f 
ant1 (h). 

If manifold (1.2) has the form u (t,) = a,, where a, are specified quantities, while 

the functional y = &t, + min with respect to u E U, then we obtain the time- 

optimality problem in the slow variables. We note that in problems with small controls 
the value of the fast variable, namely, the phase 9 , is usually not fixed, i.e. its first end- 

point is free. The cases when it is necessary to allow for a dependency on the fast vari- 
able 9 in (1.2). (1.3). as well as when the initial manifold is 

L (z, a, $, 4 Ito = 0, L = (L, ,..., L,), 16 r.6 n 

require a special consideration. 
Let us assume that the optimal problem (1.1) - (1.3) has a unique solution for all suf- 

ficiently small values of the parameter E > 0 being considered here. Then the optimal 

control and trajectory satisfy the maximum principle [4] which can be stated as follows 
in the case under examination. Let p be an n-dimensional vector of the variables ad- 
joint to vector a, and let f~ denote the scalar adjoint variable corresponding to Ip. Then, 
at any instant t E [to, tl] the equality 
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H*=~(pf (-r,a,rp, u*, E)) + h (z) + EF (z, a, 9, u*, 41 Q = (1.5) 

max H 
UE tr = u”E”Ii” @(Pf ( z, a, $, u, e)) + [Y (z)+ eF (.t, a, 9, u, &)I d 

is valid for the optimal control U* (t) . Here 

H = E (pf) + (v + eF)q - vq + dz (1.6) 

is the Hamiltonian function of the system, @fi denotes the scalar product of vectors 

p and f, while p and q satisfy the adjoint equations and the transversality conditions 
at the right endpoint (1.7) 

The variables a and I# satisfy system (1.1) with u = u* (t) and the equality 

(1.8) 

must be fulfilled at the interval’s endpoint, while 

H* (t) = H” (tJ = 0, t E [to, &I 0.9) 

if there is no dependency on slow time. If, for example, the constraints on the control 

are removed, i. e. u cz R,, then, as a consequence of assuming the functions f and 
F to be smooth, the necessary condition for the maximallty of H with respect to u in 

(1.5) with the other arguments fixed becomes 

dH / dui = 0, i = i,2, . . . . nt (1.10) 

from which the desired optimal control can be determined as a function of ‘r, a, $, p, 

q and E 
u* = v (r, a, $, p, q, E) (1.11) 

Here the function V is assumed sufficiently smooth and periodic in 9 with period 2~ 

We assume that Eq. (1.10) is uniquely solvable relative to the components of vector u 
and that u* is really the maximum point. These conditions are fulfilled, obviously, if 

the function H is strictly upper convex, for example, is a negative definite quadratic 

form in U. However, if the controls are subject to certain geometric constraints, then 
the optimal control (1.11) is determined from the general condition (1.5) and its deter- 
mination is assumed to be single-valued, i. e. singular controls are absent. Thus, suppose 

that a sufficiently smooth control v from (1.11) has been determined and substituted 
into Eqs. (1.1). (1.6) whose right-hand sides are assumed to be functions of II,, smooth 
relative to z, a, p, q, E and piecewise continuous and periodic with period 2rc. Then 

among the solutlcms of the resulting boundary value problem (1. l), (1.2), (1.7), (1.8), 
(1.11) we can find one which is optimal in the sense of (1.3). whose substitution into 
(1.11) results in a .solution of the original optimal control problem (1. l)-(1.3). If the 
boundary value problem’s solution is unique, it determines the solution of the optimal 
control problem in [4]. However, by a series of examples and by general reasoning we 
can show that the solution of the boundary value problem, or, more precisely, the solution 
of the transcendental Eq, (1.8) or (1.9) with respect to E,, is not unique as a rule. Among 
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the solutions mentioned we select an optimal one giving a minimum to functional (1.3). 
Such a solution exists by virtue of the assumptions on the existence and uniqueness of 

the solution of the optimal control problem (l.l)-(1.3). 
We should note that small parameter methods were applied in [3, 5-S]. Cases of 

asymptotically large fixed instant of termination of the control process T - 1 1 8 were 
investigated in [8, 91 by the averaging method ; asymptotic methods were employed in 

r31 l 

2, Con8tructlon of arnonlc averaging of the ryttsm. Approxi- 
mate 8olution of the problem. System (1.1). (1.7). (1.11) is a standard sys- 
tem with rotating phase, to which the averaging method with respect to the fast variable, 

i.e. phase 9 , is applicable [ 1 - 33. If Hamiltonian (1.5) is a sufficiently smooth func- 
tion of the siow variables, the averaged system can be constructed with any degree of 

accuracy with respect to the small parameter‘ E. Below, on the basis of the canonic ave- 

raging method developed in [9], we construct a new (averaged) Hamiltonian not contain- 
ing the fast variable. Thus, we construct a univalent canonic change of original varia- 

bles (a, 9, p, q) to new (averaged) variables (g, cp, q, p) such that, firstly, the corre- 

sponding system of equations does not contain the fast variable cp in the right-hand side 

and, secondly, the original and the new variables coincide when a = 0 . Such a change 

is effected by a generating function L$ [lo] 

as as 
P==T’ !?=-yjp S’$’ cp_$$- (S = S CT, a, II, 1?, p, E)) (2.1) 

where S must yield the identity transformation when E = 0 , i. e. 

s = (all) + WB + ao t-c, a, 11‘7 r7, PI a) 
Consequently, 

(2.2) 

P-7+& q+++ &a++, 
ao 

rp=W-Q- (2.3) 

Since the original and the new Hamiltonians also must coincide when E = 0 , we 
seek the averaged Hamiltonian K in the form 

fc = K (z, E, rl, g, e) = v (r>B -t e k (7, E, rl, IL a) (2.4) 

The functions H, 3 and K are subject to the following differen~al relation 

(2.5) 

This equation permits us to determine the unknown functions with the accuracy needed. 
With due regard to (2.3), by substituting the representations (2.2) and (2.4). we transform 
the equation obtained 

where h = H* - qv. We construct the solution of Eq. (2.6) approximately as series 

expansions in integer powers of the small parameter 

a = 60 (7, a, 9, q, B) + ea, + e2u2 + . . ., 
k = ko(zi$,1 q, j3) + E& + 8% + . . . 

(2.7 
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We substitute series (2.7) into (2. B), expand with respect to the small parameter, and 
compare the coefficients of like powers of a. We obtain a sequence of linking equations 
the solving of which allows us to find the unknown functions IJ~, ki. The representations 

2x 

w4,%P) =& 5 hiWvhq,P)dJ!~ (hi) (2.8) 

0 

WdJ,%q$)= -&~(&-(h~>)dJ1, f=O,f,2,... 

are valid for the coefficients of expansions (2,7), The coefficients ht are determined 
sequentially in terms of known quantities. For example, the first three have the form 

and so on. From (2,9), (2.8) it follows that the number of coefficients is delimited by 
the degree of smoothness of the original ~amiltonia~ 

If the right-hand sides of system (1. I), (1.7) with u = r are only piecewise-conti- 
nuous in q,‘then we can write down the so-called first-approximation system and the 
corresponding initial and boundary conditions f 111 

Here and in (2.8) the angle brackets denote averaging with respect to 9 ; for example, 
2% 

while an expression of the type (XV denotes, as before, the scalar product of vectors 
X and Y. 

In the boundary-value problem of first approximation the first two vector equations 
are integrable independently of cp, which permits us to introduce the slow time s = 
e (t - to> 

$ = fo @, E, ri), E (0) = a,, Go (~1, rj, (~1)) = 0 (2.11) 

a 
x== - & (fo (%k ‘I) “0, 7 &I) = - &,(% E (st)) - @G&G E(sl))) 
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Here Si = E (tl - to), while, as a consequence of the boundary conditions, the con- 
stant /3 is assumed equal to zero with an error of the order of E . In fact, from (2.3)and 
(1.7) it follows that 

p= 
-&w t1 

aa -O(e) 
I 

The initial and boundary conditions for the first-appoximation problem can be written 

out, with an error of the order of E, as equations in the slow time S. We note that in 

the problem under analysis the averaged phase - the fast variable cp - determines I# 
alsowithan error of the order of a after an integration of the system of slow variables 

In slow time S we obtain for ‘p s 

cp (s,e) = $0 + $ s 1~ (z’) + &Fo @‘, E (s’), tl (~71 A’ 
0 

(2.13) 

With regard to the boundary-value problem (2.11) we assume that it admits of a unique 
solution for any given S, N 1. 

Let us now treat condition (1. 8) as an equation for determining the control process 

termination instant. Into this equation we substitute the approximate expressions found 

c = E (SA) + 0 (a), P = rl (s, $) + 0 (E), p = 0 (E) 

w = rp (WI, E) + 0 (8) 

We obtain an approximate relation for determining s1 

h (4 = (11 ($3 s1> f* (Tl, 5 (s1, sd, cp 61, 3, 4, 11 ($7 %), 0, 0) +- @*14) 

0 (E) = dg, / do, + (adG, / 8~,) 

The form of the left-hand side establishes that the transcendental equation obtained has, 

in general, many roots the number of which tends to infinity as [1 / E] for E -+ 0 be- 
cause a rapidly oscillating function of Si with a frequency of the order of j / E and an 

amplitude of the order of unity occurs on the left. The set {S1*} of roots of this equa- 

tion forms a discrete interval of length of the order of unity, while the distance between 
adjacent roots is of the order of E. The values of the roots from this set are determined 
with an obligatory error of the order of E a. Obviously, the desired optimal solution is ob- 

tained by minimizing the approximate value of the functional over the set {sl* } of ad- 
missible roots. Without lessening the accuracy with respect to the slow variables and to 

the functional we can determine the magnitude of s1 also with an error of the order of 
a. Then the admissible root set {S1* } is continuous, while a root of the equation occurs 

at the a-neighborhood of any value in the sense indicated above. 

Let us find the minimal value of the approximate functional and the corresponding 
value of S1*. For this purpose we make use of the expression for the averaged Hamilton- 

ian (2.4), containing the unknown parameter 6. We write out this value with an error 

of the order of aa by using the second formula in (2.3) taken for s = sl, and the corre- 
sponding expression for o,, (see (2.8) and (2.9)). We obtain 

P= -E$qs,+O(&~) (2.15) 
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if the value of s, is known with error 0 (e*) as well. We write out the expression for 
the averaged Hamiltonian 

Substituting here the expression (2.15) for fi we obtain the same equation (2.14) for the 
approximate determination of the unknown parameter sl of the problem. Later on, how- 
ever, we shall determine the magnitude of sl with error 0 (a). Setting x = p / e and 
discarding terms 0 (e), from (2.16) we obtain an equation for sl 

(2.17) 

This equation allows us to determine with error 0 (e) the process termination instanr 
as a function of parameter x from some continuous interval containing, by virtue of 
(2,15), the point zero. As established above, the quantity x should be chosen such that 
the magnitude of functional (I, 3). computed approximately 

would reach a minimum with respect to x (or to Sr= 8, (x)). The necessary minimum 
condition is 

Let us assume, further, that using (2.17) we have effected a one-to-one correspondence 
between sX and 3~ in the domain being examined. i. e. 

(2.20) 

Then the necessary minimum condition (2.19) reduces to 

da ago 
dq=a71 

+ &? dE _L!._- = 0 
8~ da (2.21) 

Since according to (2.11) 

the expression 
ago 

_@ - WJsc dn = an 
- (&X, 2 , 5 = E (~1, ~1) 

is valid for the unknown derivative. We now substitute the quantity (rf,),, in accord- 
ance with (2‘17) and obtain 

a &Go (~1, E (~1, 0) + v 6) ~7 a = a (~1) 

Since G, (Q, E (sI, sJ) = 0 relative to sr, dG, / ds, = 0. As a result 

dg, / ds, I= Y (?r)X 
whence it follows that 

(2.22) 
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(2.23) 

Here the functions S, (x) and zl (x) are assumed to have been computed in accord with 
(2.17). On the basis of the assumptions Y > v0 > 0 and (2.20). from (2.23) it follows 
that the point 1~ = 0 is suspected to be at an extremum, If the inequality 

ds,/dX/,=,>O (2.24) 

holds, the value 3c = 0 is a point of local minims. The condition for the global mi- 
nimum of point x = 0 on the interval being considered of admissible values of x is 

Y 

(2.25) 

The inequality obtained can be transformed with the aid of relation (2.17) written as 

follows : 
- x 6% (4) + y (r.1 (4fx = 0 

x1= s1+ k, cf.== a (Sl) (2.2'7) 

From (2.26) we find x = x / v, which permits us to write inequality (2.25) as 
31 

I 
’ ~@;)dsl’>o (2,28) 
S$O> 

Here the problem’s parameter s1 belongs to some neighb~h~ being examined of the 

point sr (0) , i. e, of the locally optimal value of the process termination instant, corre- 
sponding to x = 0. 

Thus, if inequaliry (2.28) has been established, then this completes the procedure of 

constructing the optimal first-approximation solution. The solution algorithm for the 
optimal control problem (1. l)-(1.3) reduces to solving boundary -value problem (2.11) 
relative to the 2n variables E and rj on a bounded interval (sr - 1) and the optimal 

control process termination instant is given by relation (2.17) in which x = 0. The 
minimal value of functional (1.3) equals J,,(O) with error 0 (a) ; the approximate 
optimal control is obtained from (1.11) by substituting into it the expressions found 

uo * = v (a, 4 9, 11, 0, 0) = T’ (‘6, E, cp, ‘1, 0, 0) + 0 (E) (2.29) 

If in the first approximation there is no dependency on z , the solution algorithm simpli- 
fies and reduces to constructing a solution of the boundary-value problem 

(2.30) 

where s, is a root of the equation 

Ice (4 = (rl (%r s&)9 fo (E (SD SI), rl b17 SIN = 0 

We note that the order of the differential equation system can be lowered, since ko (S) = 

0, s E LU, ql. The solution is found in quadratures for a system with one degree’ df 
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freedom. Certain examples of the optimal control of quasilinear oscillatory systems 
with one degree of freedom were solved in the first approximation in Sect. 3. 

Let us consider briefly the construction procedure for solutions of higher approxima- 

tions in E. For this we must write out the averaged boundary-value problem of zeroth 

approximation with the aid of formulas (2.7)-(2.9). which also permits us to introduce 
the slow time s = e (t - t,,) 

(2.31) 
dS 

ds== EP)=$ 

Here the unknown constants Es, q 1, sr, ‘pa and fi are determined from the initial con- 

ditions (1.1) for a and I#, from the process termination conditions (1.2). from the trans- 

versality conditions (1.7) at the right endpoint for the adjoint variables and from the con- 
dition that the Hamiltonian equals zero at instant a,. Since the quantity s, is found, 

generally speaking, ambiguously, to determine it we can use the minimum condition for 
functional (1.3) written out with the appropriate accuracy. 

Let us present the solution algorithm. Suppose that the general solution of system 

(2.31) has been constructed,depending on s and on to, Q, sr, (po, fl, E as if on para- 
meters 

E = E (s, Eo, rll, Sl, p, 81, 7 = 11 (4 Eo, rely sly h 4 (2.32) 

We solve the last two of Eqs. (2.3) relative to a and I$ to the needed accuracy in E 

a = E + EL4 (z, g, Cp, ‘1, fi, e), W = cp + EY (T, &, cp, q, fl, E) (2.33) 
and we substitute into the first two relations ; we obtain 

Here ~4, Y, P, Q are known functions. To construct the first two of them we can use 
the series expansion method or the successive approximations scheme in powers of E. 

As a result, for the determination of the unknown parameters Eo, cpo, ‘thy s1 and p 
we obtain, with the accuracy needed, the system 

fo + aA (To, Eat ‘PO, rl ((0, B1 e) = a0 (2.35) 

‘PO + eW (To, Eo, ‘PO, rl (% PY e) = 90 
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As was shown for the first-ap~oximation case, the solution of the last ~a~~nden~l 
equation in system (2.35) relative to sr is found, in general, nonuniquely with the appro- 
priate accuracy, For the parameter S1 we obtain a discrete set of values (of the order of 
[ 1 / e]) on an interval of finite length and the distance between successive roots is of 
the order of a. For choosing the optimal value we must use the control performance 
index (1.3) and the quantity a1 can be chosen from some continuous interval. Obviously, 
in the case of the higher approximations the admissible values of s, form, in general, a 
discrete set, The optimal value of s1 is found from the minimum condition of functional 
(1.3). written out with the appropriate accuracy, by minimization over the discrete set 

69 1 J* = y&Q! Vlv E h 4 -t d I I,, 8) (2.36) 

where {sl* } is the set of admissible roots of system (2.35). It is obvious that the opti- 
mal value sr* lies in an e-neighborhood of the quantity s, (0) found from (2.17) with 
x = u. 

The solution of the optimal control problem (1. I)-& 3) is constructed analogously 
to the f~t~p~o~mation case considered above ; the ~~es~nding approximate opti- 
mal control is constructed by using expression (1.11) into which we have substituted the 
solutions (2.34) (and (2.33)). We note that if the vector-valued control functions are 
subject to certain geometric constraints, then we can work out an analogous procedure 
for cons~ucting the ap~o~mate solution, Since as a rule the right-hand sides are only 
piecewise-continuous, we can successfully construct only the first approximation. Cer- 
tain concrete problems are solved in Sect.3 . 

3, Bxrmplss, Let us investigate in the first ap~o~mation certain weakly-con- 
trollable oscillatory systems. Suppose that we have a quasilinear controllable system 
with one degree of freedom 

5” + va (i) 5 = E f (T, Lc, Xc’, u), r (1,) = 20, 2’ (f$)) = 20’ (3.1) 

Here o is slow time, x is a coordinate, 5’ is the velocity, u is a scalar control, f is 
some sufficiently smooth function. When E = 0 the frequency Y = con&, while .z and 
5’ are periodic fictions of time 

x= asin*, 5’=avcos*, *=vt+qO 

a = (x++ z,‘~/ v2)‘lp > 0, q0 = arctg z0 v / zO’ 
(3.2) 

where a is the amp~tude of the oscillations, 4 is the phase, +,, is a constant. When 
e # 0 the system in the new variables a and 9, connected with the original relations 
(3.2). is described by equations of type (1.1) 

’ a’=: -;;- If (%, a sin 9, (iv co9 9, u) - uv’ 00s *] cos 9, a (to) = m (3.3) 

$‘= Y (z) - +rrc z, a sin $, av co9 $, u) - uv’ co.5 $71 sin 11, ‘II, (to) = +3 
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We pose the problem of changing the oscillation ampIitude of system (3.3) 

e 61) = a1 (*J (3.41 

where % is a given function of 7, greater than zero. while be is not fixed. Here the con- 
trol performance index is 

t1 

with respect to u. In (3.5) the first term is the “cost” as an amount of time, while the 
second is the corresponding control resource expenditure. 

Further, we examine the case of a function f linear in it 

f @, 5, z’, 4 = fo (‘t, x9 2’) + fi h 2, 5’) lJ 

Computing the Hamiltonian function (1.6)‘ from (1.10) we obtain 

U*=JI(rt,a,**P,q)= 

(3,6) 

(3.7) 

Obviously, u* is the unique point of maximum of function H with respect to ~6, whichis 

N*=$(fo--CV’CCX3~) 
( 
pcas$--+riin$’ + &fit pe~s~-+ain~~+ 

> 
vq---=vq-+-$h(z, a,%,p,q) 

( j 

The aids-value problem is described by Eqs. (3.3) into which expression (3,7) has 
been substituted, by condition (3.4), and also by the equations for the ad joint variables 
p and q of type (1.7) and by the transversality conditions 

p’ = - 8 ahfaa, .p (tl) = 4; 9’ = - ~ah/a*, q (tlj = 0 

The equation of type (LB), used for determining the process termination instant tl,. is: 
h (tl) = a (tl) al’ (I& where the prime denotes the derivative with respect to, 2,. 

Let us apply the ‘method, developed for concocting the first approximation, in the 
simple case when there is no dependency on z , while t, = 0, f. s 0, E = fi = 1. Then 
on the basis of (2.30) we obtain 

E = -..+,.s / 4 ys + Q@, q = -CC, s = et, a = 4P f% - %I I Sl 

The equation for determining the optimal $1 is: a2 = 8 vs (k - vx) ; whence, setting 
x = 0, we find S, (0) y v i/2/k 1 aa - a,,[. 

Let us show that the local minimum condition (2.24) is fulfilled, i.e. dsi I d x I,;l0.> 0 
or, equivalently, & / dsz jsr_(ol > 0. In fact, since 3c = [k - 2 G (a0 - o,)~ / ~~21 / v, 

dx 4Y - 
I ds1 s,=s*(0f 

= - a* - ap > 0 
sly (0) 

We also show that the global minimum condition is fulfilled. In fact, 
Sl 

s 
k 

Xl (Sl’) ds1’ z?z - Is1 
$1 - Sl (O)l’/Sl $3 0 

wxo 

Thus, the ap~oxima~ solution of problem (3.3)-(3-5) is 
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g=- $QJ- (a0 - 4 + a0 ‘= +1/T sign (al - ao) + a~ 

and the “time expenditure” and the control resource expenditure are equal. 
As a comparison we consider a similar problem with a constraint on the control: 

1 u 1 d UO, while we take time as the performance index: J = et, --+ min with respect 
to I u J 4 tie. The solution of the first-approximation problem is 

6 = $ u0s sign (ai - UO) + ao, si = z 1 ai - no 1 

ui3* .. : El0 sign [@I - no) cos *I, $1 + + % -l- 0 (a) 

Suppose that the process termination time for both the problems posed is the same, 
i.e. Y 1/21k1~,-~~1~nv1~,--~(i2~,, which corresponds to the value u. = 
n)/‘k / 2. Let us compute the control resource expenditure corresponding to control 
with the u. indicated ; we obtain 

SI 

c 
3E2 k 

.I 
rc’ds ~= --$-v T/ T [al-- an/ 

0 

We take the ratio with the expenditure obtained for the performance index (3.5) : 
~,~~,/~~(O)k=rc~/8>1. Thus, in the sense indicated, control by a control Of type 

(3.7) proves to be more “economical”. 
We note that a system of type (3,l) with a fixed control process termination instant 

T r~ 1 I E was investigated in [9] for various forms of functionals and of constraints on 
the control. 

Now let f = f. (q x, 2’) i_ d (T) u (see [9]) ; then for index (3.5) we obtain the boun- 
dary -value problem 

@a 1 1 d2 -- ds==Y&-l- 4$ $ P)% 4 (so) = ao, F ($1) = a1 (Zl) (3. S) 

dq 1 Y’ 1 afo,, --- 
ds- 2 y S--G-itF,Q q(n)=-a, s -= et 

Here 

The process termination instant ~1 is determined from the relation 

For example, let us take v = const, E = d = I, f. = -2 t” + pss; then, setting 
i. = 0, we obtain the exact solution of the averaged madam-value problem (3.8) as 

5 (s, ~3) .= aoe 
-hs 

+ mv= 
_JL ex(s-sl) (1 _ e-y h, p II eonst (3.9) 
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Here -?.a, 

Setting z = emha *, we obtain a fourth-order equation for .Z and under the condition 
a > 0 we find 

(3.10) 

Here the plus sign corresponds to a positive Q, i. e, to an increase in E (ax I o. > i), 
while the minus sign, to a decrease in F;. From the expression obtained it follows that 
when a, = a, both roots sirs = 1, i.e. 4 = 0. The values of %,a must satisfy the in- 

equality zi,, d 1, which is equivalent to the nonnegativity of si. 
Let us investigate the roots zi,s under the assumption that I a, - a, I 4 uo, a,. In 

the first approximation with respect to Aa = a0 - al we obtain 

From the expression obtained it follows that Ae;,s < 0 for any sufficiently small values 
of I Au I, independently of the sign of Au, since we should choose the plus sign for nega- 
tive Aa while a minus sigh for positive Au. Thus, the problem has a solution which is 
optimal in the sense of (3,5), For the problem of driving (q > UO) or of damping(~~ < 
UIJ) the optimal control process termination instants s, is 

(3.11) 

The approximate value of the optimal control is s 
u# -_ c_ t rl (s, s1) cos 9, $-%+$ $2 (s’) ds’ + 0 (6) (3.12) 

0 

B(s) - v -$T p(s, Sl) 

where P = 61 (8) is the perturbed oscillation frequency , Formulas (3.9)-(3.12) yield 
an approximate solution of the optimal control problem. 

The author thanks F, L. Chernous 30 and G, K. Pozharitskii for attention to the work and 
for important remarks. 
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We investigate to what general form can a Hamiltonian be reduced by an arbit- 
rary canonic malformation preserving the property of Liapunov stability. We have 
succeeded in answering this question fully in the case of a stable autonomo~ 

Hamiltonian. One of the results of the analysis undertaken is a method of reduc- 

ing the Hamiltonian to normal form in finite order, different from those proposed 

earlier [ 11, possessing definite advantages in comparison with them and exposing 
the connection between the methods of normalization and of averaging. We de- 
rive a table allowing us to compute from the original Hamiltonian its third-order 

normal form in the presence of any third-order resonances. A canonic transfor- 
mation of the original Hamiltonian to a form more convenient for study is usu- 
ally used in the investigation of the Liapunov stability of an equilibrium position. 
From such a viewpoint we can arrive at the method of 3irkhoff ~ansformations 
[Z] and many stability results have recently been obtained in this way, having a 
practical value (for example, [3-5-J and others). In the application of the method 
indicated it is necessary that there exist a close connection between the stability 
properties of the original and of the transformed Hamiltonians. Therefore, only 
autonomous transformations are usually used. However, such a restriction is not 
connected with the conditions for the applicability of the given method even in 
the case of an autonomous original Hamiltonian. It is interesting to consider this 
problem from a general point of view, without being tied down to the autonomous 

case. 


